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Abstract

Healthcare data time-series signal quality assessment (SQA) plays a

vital role in the accuracy and reliability of machine learning algorithms

to analyze health metrics. However, these signals are often corrupted

with different kinds of noises and artifacts, including Baseline Wander,

Muscle Artifacts, Powerline Interference, and Equipment Failure. This

can lead to vital, potentially deadly, errors in the medical domain. This

can include inaccurate calculation of basic health features like Heart Rate,

clinical alarm burnout from bedside monitors, as well as disrupting general

downstream machine learning tasks. While some work has been done in

the area of open-source signal quality analysis in general, there are very

few open source implementations of signal quality analysis frameworks

that attempt to reproduce and expand on existing results on open source

datasets.

First, we propose an open-source implementation of signal quality

indices (SQIs) for analysis of electrocardiogram (ECG), plethysmography,

and more. We aim to codify and reproduce SQIs and results from The

Physionet Signal Quality Classification 2011 Challenge. We show that

these SQIs may be used for signal quality outlier detection in a real world

clinical dataset from University of Pittsburgh Medical Center (UPMC).

Secondly, in the case of another common healthcare SQA issue: ECG

denoising, we compare Wavelet, EMD, and Convolutional Autoencoder

denoising techniques. We show that Convolutional Autoencoder denoising

performs the best on the open MIT-BIH Arrhythmia Noise Stress Test

dataset, and evaluate it on the UPMC dataset. We also perform a case
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study on ECG denoising for real vs artifactual alert classification. To our

knowledge, we are the first to provide an open source implementation

of these two SQA tasks that is validated on public datasets. Ideally,

this work serves as an accessible, open source, toolkit for signal quality

analysis and ECG denoising.
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Chapter 1

Introduction

Healthcare data time-series signal quality assessment (SQA) plays a vital role in
the accuracy and reliability of machine learning (ML) algorithms to analyze health
metrics. However, these signals are often corrupted with different kinds of noise
and artifact such as Baseline Wander, Muscle Artifacts, Powerline Interference, and
Equipment Failure. This can lead to vital, potentially deadly, errors in clinical
practice. Signal quality is crucial in false alarm reduction [5, 17, 34, 54], physiological
pattern discovery [22, 23], modelling electrocardiogram data [27, 46], determining
cardiovascular sufficiency [56, 69], and more. In all of these applications, issues with
quality can significantly reduce the accuracy and applicability of these ML algorithms.

One of the largest bodies of work in the signal quality space involves Electrocar-
diogram (ECG) signal quality assessment. Since it includes many approaches that are
generalizable to signal quality analysis as a whole, much of this work is dedicated to
ECG signal quality. While some work has been done in the area of open-source signal
quality analysis, there are very few open source implementations of signal quality
analysis frameworks that attempt to reproduce and expand on existing results on
open source datasets. For example, Neurokit2 1[61] - one of the largest ECG analysis
libraries - only implements 2 signal quality analysis indices, one of which does not
work well in practice. Additionally, there is a lack practical evaluation on open source
datasets. Aura Healthcare2 - another ECG analysis repository - includes methods

1github.com/neuropsychology/NeuroKit
2github.com/Aura-healthcare/ecg_qc
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1. Introduction

that overlap with Neurokit2 and shares the issue of having no evaluation results on
open source datasets.

In this work, we develop and analyze an open-source, reproducible, python
implementation of many common SQA methods, including signal quality indices for
analysis of electrocardiogram (ECG), plethysmography (Pleth), and other vital sign
timeseries data. Additionally, we validate our results on both a closed-source bleeding
dataset from the University of Pittsburgh Medical Center (UPMC) [70] as well as
publicly available datasets such as the MIT-BIH Arrhythmia dataset [67] (See Figure
1.2).

Our main task is to analyze signal quality from recorded Pig Lab Experiments
with University of Pittsburgh School of Medicine. The data consists of 25 pigs
are anesthetized, bled at 10 mL/min, and resuscitated when hemorrhagic shock is
observed (See Figure 1.1).

Figure 1.1: Diagram of the data colletion process for the Pig Data. First, the
Config stage consists of calibration of equipment. Next, the baseline stage consists of
monitoring stable pig baseline data to have a comparison for later use. Next, The
Bleed stage is when the pig is bled at 10 mL/min until hemorrhagic shock threshold
is reached. Finally, The Wait / resuscitate stage attempts to resuscitate the pig by
adding fluid and medicine until the pig is stable.

Although 25 patients is current, the number is consistently increasing due to
ongoing experiments. Vital signs, as well as other features, are recorded over the
course of the hemorrhage process. This includes 9 Signals: Plethysmography (Pleth),
Electrocardiogram (ECG), Cardiac Output (CO), Venous Oxygen Saturation (SvO2),
Pulsoxymetrically Measured Oxygen Saturation (SpO2), Pulmonary Arterial Pressure
(PAP), Central Venous Blood Pressure (CVP), Arterial Blood Pressure (ART), and
finally, Air Pressure in Lungs (AirPr). Overall, this data collection yields 3 to 7 hrs
of data at 250hz.

After discussing with data collection staff as well as clinicians, there are 2 primary
issues

1. Issue 1: Detection of anomalous signals. Solution: Outlier detection via Signal
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1. Introduction

Quality Indices (SQIs)

2. Issue 2: Noisy ECG Signal. Solution: ECG denoising techniques, e.g. wavelet
denoising

For outlier detection on signals, Signal Quality Indices (SQIs) are a natural
featurization. To demonstrate the power of these SQIs, we produce results on 2 case
studies. Firstly, we reproduce an old Physionet 2011 ECG Quality Classification
Challenge [94] with 8 different methods, codify lessons learned, and show that a
combination of all methods produce the best results, as opposed to any one method.
Secondly, we demonstrate the ability of SQIs to improve Real vs Artifactual alert
detection [34].

Next, we perform outlier detection using the SQIs introduced previously. We
empirically find the best outlier detection method out of 4 methods on the Physionet
dataset and show results on the pig dataset.

Finally, we will go over ECG denoising. We again, empirically find the best
method out of 3 traditional methods on the open source MIT-BIH-Arrhythmia [67]
and its corresponding Noise Stress Test Dataset [68], and show results on the pig
dataset.

We will also release our code, which will be completely built on top of open source
python packages and complete to reproduce baseline results out of the box (See
Figure 1.2).

3



1. Introduction

Figure 1.2: github.com/chufangao/signal_quality is an open-source, reproducible,
python implementation of many common Signal Quality Analysis methods, including
signal quality indices for analysis of electrocardiogram (ECG), plethysmography
(Pleth), and more. In addition, example notebooks containing code for signal quality
classification, outlier detection, and ECG Signal Denoising is also provided. Our
methods are evaluated on publicly available datasets like the MIT-BIH Arrhythmia
dataset and the Physionet 2011 ECG Quality Classification Challenge.

1.1 Examples of Noise

Common artifacts in vital sign recording include the following. [12, 45, 91]

1. Baseline Wander and Abrupt Drift. This is essentially a baseline noise that
occurs while collecting ECG data, that may be caused by respiration (sedated
or not), electrolyte properties, skin impedance, and other sources of random
noise. See Figure 1.3.

2. Electrode motion artifact. This type of noise is caused by intermittent
mechanical noise and may mimic the appearance of beats. It is generally
considered the most troublesome, since it cannot be removed easily by simple
filters. See Figure 1.4.

3. Sudden Body Movement. This includes artifacts induced by electrical

4
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1. Introduction

Figure 1.3: Baseline Wander Example in ECG

Figure 1.4: Electrode motion artifact Example in ECG

activity of muscles during periods of contraction, which is usually an issue for
not-sedated subjects. However, induced movement of a sedated subject, such
as via manual blood draws, also causes many artifact in the vital sign signals.
See Figure 1.5.

4. Measurement Equipment Failure. This area includes areas such as mistak-
enly reversing the ECG leads on the subject body, or simply, the measurement
equipment not being calibrated. E.g. Flatlines, wrong amplitude, losing one
electrode, etc. See Figure 1.6. Additionally, during experiments, if a resuscita-
tion pump fails, the ECG would not match a physician’s intuition of a recovery
trajectory. Therefore, extra care should be taken to interpret data from affected
subjects accordingly.

5



1. Introduction

Figure 1.5: Muscle Artifact Example in ECG

Figure 1.6: Equipment Failure Example in ECG

5. Power-Line Interference (50-60 hz Signal Interference) It is common that
measurement equipment absorbs a constant 50-60 hz noise cause by inductive
and capacitive couplings of ubiquitous power lines in the ECG signal acquisition
circuitry. However, due to its ubiquitous nature, it is usually easily removed by
notch filters.

6



Chapter 2

Literature Review

2.1 ECG Signal Quality

Signal Quality Index (SQI / SQA) Methods

Beat Detection, Inter-channel Beats, Kurtosis, and Spectral SQI: Li et
al. [52] was one of the first to apply machine learning to address ECG signal quality.
Although the main focus of that work is robust heart rate estimation, it introduces
some common ECG SQIS that many future works use. The dataset used was the
MIMIC-II [87], where real ECG noise from the MIT-BIH Noise Stress Test Database
[68] was added to clean ECG signals. ECG signal quality was calculated via 4
methods.

First, two beat detection algorithms, wqrs [106] and ep_limited [28] are compared.

bSQI =
Number of beats detected by both
Number of beats detected in total

bSQI is calculated for each heartbeat with a window of 10 seconds.
Second, an inter-channel signal quality metric iSQI is calculated as

iSQI = max
over 10 seconds

Number of matched beats
Number of all detected beats

7



2. Literature Review

Third, the kurtosis of the signal is calculated

kSQI =
1

M

M∑
i=1

[
xi − µ̂

σ̂

]4
where µ̂, σ̂ are the empirical mean and standard deviation of the discrete signal x of
length M (i.e. signal can be stored in an array of length M).

Fourth, the spectral distribution of ECG is taken into account. The spectral
distribution ration

SDR(kth beat) =
∫ f=14hz

f=5hz
P (10s window around kth beat)df∫ f=50hz

f=5hz
P (10s window around kth beat)df

Finally, pSQI was defined pSQI =

1 if .5 ≤ SDR ≤ .8

0, otherwise
Finally, the SQIs are used along with Kalman Filtering to show that using SQIs

significantly improved the heart rate estimation.

Skewness, Flat Line, and Baseline Power SQI: Clifford et al. [15] use the
same 4 SQIs as Li et al. [52] above, but also add 3 more SQIs from [13]. The authors
were able to achieve the second-highest score [53] in the PhysioNet/Computing in
Cardiology Challenge 2011 event 1 [94]. To obtain balanced samples of all 3 signal
quality groups (acceptable, intermediate, unacceptable), noise was added to clean
ECG signals from noise stress test database [68].

The authors added a skewness SQI

sSQI =
1

M

M∑
i=1

[
xi − µ̂i

σ̂i

]3
where µ̂i, σ̂i are the empirical mean and standard deviation of xi.

Additionally, a flatness SQI: fSQI was added that quantified how long the signal
was a flat line.

Finally, basSQI, or the the relative power in the baseline, was added, which was

8



2. Literature Review

calculated as the following:

basSQI = 1−
∫ f=1hz

f=0hz
P (ecg_window)df∫ f=40hz

f=0hz
P (ecg_window)df

Finally, the authors compared 2 ML models–Support Vector Machine (SVM) and
Multilayer Perceptron (MLP)–on the ECG signal quality classification task. Although
both achived similar accuracy, the SVM generally performed slightly better, achieving
an accuracy of 98% on the training data and 97% on the test data.

Baseline Wander, Energy, Complexity, Entropy, and other SQIs: Li et
al. [55] developed a five-level, machine learning based, signal quality classification
algorithm. In total, 13 signal quality metrics were derived from segments of ECG
waveforms and classified via support vector machine. Training was done on a simulated
dataset and validation was done on the MIT-BIH arrhythmia database [67]. The
PCinC Challenge dataset [94] was re-annotated, adding varying levels of noise (varying
signal to noise ratio levels) to the clean signals from the MIT-BIH Noise Stress Test
Database (NSTDB) [68]. The validation dataset was also re-annotated. After QRS
detection, 6 more SQIs were added to the SQIs used by Clifford et al. [15] The
following list of SQIs were extracted:

Like previous work, the fraction of beats detected by 2 different QRS detectors
(bSQI), the third moment or skewness of the ECG signal (sSQI), the fourth moment
or kurtosis of the ECG signal (kSQI), the relative power in the QRS complex (pSQI),
the relative power in the baseline (basSQI) was extracted.

Additionally, a baseline wander check in time domain (bsSQI) was extracted.

bsSQI =
1

N

N∑
i=1

(
peak-to-peak amplitude of QRS

peak-to-peak amplitude of filtered baseline

)

The relative energy in the QRS complex was calculated:

eSQI =

∑
i E(QRSi)

E(window)

where E(x) =
∑|x|

i x2
i is the energy of the time series signal, and QRSi is a detected

9



2. Literature Review

QRS signal segmented by [R− .7s,R+ .8s] and window is the time window of analysis.
The relative amplitude of high frequency noise is calculated as the following:

hfSQI =
1

N

N∑
i=1

peak to peak amplitude of QRS
Hi

where the ECG signal was filtered through an integer filter y(j) = x(j)− 2x(j − 1) +

x(j − 2), s(j) = |y(j)|+ |y(j − 1)|+ · · ·+ |y(j − 5)|, Hi = mean[R−.28s,R−.05s](s(j))

The signal purity[73] (Hjorth Descriptor [25]) of ECG is calculated:

purSQI =
ω̄2(k)

2

ω̄0(k)ω̄4(k)

where ω̄n is the n-th order spectral moment ω =
∫ π

−π
ωnP (ejω)dω, with angular

frequency ω = 2πf

The relative standard deviation (STD) of QRS complex is calculated:

rsdSQI =
1

N

N∑
i=1

σri
2σai

where σri = STD[R−.07s,R+.08s](QRSi) is the standard deviation around a small
window of the QRS signal and σri = STD[R−.2s,R+.2s](QRSi) is the standard deviation
around a large window of the QRS signal.

The sample entropy[85] of the ECG waveform is calculated:

entSQI = En(m, r,N) = − ln

[
Am(r)

Bm(r)

]
where N is the length of the ECG signal ((i.e. signal can be stored in an array of
length N)), and En(m, r,N) as per SampEn in Richman et al. [85].

The high frequency mask of the ECG waveform is calculated

hfMSQI =

∑
i pi
pa

where pi is the instantaneous power estimate of the ith QRS and pa is the instantaneous
power estimate of the full window

10



2. Literature Review

Finally, a periodic component analysis (PiCA) periodicity measure [89] of the
ECG waveform is calculated

PiCASQI = |Cx(τt)

Cx(0)
| = |Et{x(t+ τt)x(t)}

Et{x(t)2}
|

where Cx(τt) = x(t+ τt)x(t)} is the covariance of the signal x a lag of τt on x. The
lag is applied such that x is phase-aligned with the previous beat.

2 metrics was use to measure performance: classification accuracy, and a single class
overlap accuracy, which assumes that an individual type classified into an adjacent
class is acceptable. 5-fold cross validation with an SVM yielded a classification
accuracy of 88.07 ± 0.32% and a single class overlap accuracy of 99.34 ± 0.07% on
MITDB. The test set yielded an a classification accuracy of 57.26% and an a single
class overlap accuracy of 94.23%.

PCA SQI: Behar et al. [5] also used ECG SQIs and featurizations to reduce false
alarms (FA) in ICU monitors via SVM. The PICC dataset [94] was used to train a
quality assessment model. The MIT-BIH arrhythmia dataset [67] was used to test
model performance on arrhythmic records as well as on records of a different modality,
and the MIMIC-II dataset [88] was used for discovering associations between quality
and FA in ICUs. In this work, only binary classification of ECG signal quality was
considered.

7 SQIs were calculated on 10 second intervals of each ECG lead: the fourth
moment (kurtosis) of the signal kSQI, the third moment (skewness) of the signal
sSQI, the relative power in the QRS complex pSQI, the relative power in the baseline
basSQI, the fraction and ratio of beats detected by 2 different QRS detectors bSQI.

A new SQI is added, which is:

pcaSQI =
λ1 + λ2 + · · ·λ5∑

i λi

where λi is the ith eigenvalue associated with the ith principal components obtained
by principal component analysis of all detected QRS windows.

Results from SVM with a Gaussian Kernel showed classification accuracies of 89%
overall (on all arrhythmia types), although performance varied greatly depending

11



2. Literature Review

on the type of rhythm (arrhythmia type), indicating that SQIs should be rhythm
specific and that classifiers should be trained for each rhythm call independently.

QRS Template Matching: Orphanidou et al. proposed a Signal Quality Indice
(SQI) for Electrocardiogram (ECG) and Photoplethysmogram (PPG) [74] to measure
Heart Rate calculation ability, with a binary output of “good” indicating that a
reliable HR can be derived and “bad” indicating otherwise. First, a sanity check of
the HR being larger than 40 and smaller than 180 beats per minute is done. Secondly,
a check to make sure that there should be no more than a 3 second gap between
each beat was completed. Finally, another sanity check is made such that, in each 10
second sample of ECG, the ratio of the largest and the smallest beat-to-beat interval
should be less than 10%. After these 3 checks were performed, individual QRS
complexes and PPG pulse waves were extracted and averaged to create a template.
Finally, correlation coefficients were used to calculate the average correlation between
each window and its template. The average correlation was then thresholded with a
cross validated cutoff value to determine ”goodness” of signal. The authors found
that the optimum threshold for the average correlation coefficient was 0.66 for the
ECG SQI and 0.86 for the PPG SQI. This corresponded to a sensitivity of 94% and
specificity of 97% for the ECG and a sensitivity of 91% and specificity of 95% for the
PPG SQI [74].

Rpeak Detection and Power Spectrum SQIs: Zhao et al. [105] extracted 6
SQIs from the ECG signal: the matching degree of R peak detection, power spectrum
distribution of QRS wave, variability in the R-R interval, kurtosis, skewness, and
baseline relative power. The features were used in a simple heuristic fusion as well
as a fuzzy comprehensive evaluation. The 4 best SQIs combination based on simple
combinations and thresholding–qSQI, pSQI, kSQI, basSQ–were used in a rule-based
classification system. The system assigned classifications based off of simple manual
thresholds for each SQI. An open source implementation of both methods is available
in [61].

12
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Neurokit SQIs: The Python packages Neurokit and Neurokit2 [61] has 3 versions
of ECG Signal Quality metrics. The older Neurokit has a method1 that computes
the predicted probability of given ECG signal coming from the primary lead. This
prediction is made from a standard Sklearn MultiLayerPerceptron (MLP) Classifier
[77] trained on the PTB-Diagnostic dataset [6] available from PhysioNet [26]. The
training setup is as follows: First, extract all the ECG signals from the healthy partic-
ipants, obtaining 15 recording leads per subject. Second, for each lead, downsample
the signal from 600 to 200 datapoints and extract all cardiac cycles. Third, the MLP
model is fit on 2/3 of the dataset (134392 cardiac cycles) to predict the lead, with
evaluation on the remaining 1/3. This yields an accuracy of 0.91 and a precision of
0.91 [61].

The newer Neurokit2 calculates a correlation of the QRS waveform to the average
QRS waveform (averageqrs_sqi) – a template matching method 2. It calculates a
continuous index of quality of the ECG signal by interpolating the distance of each
QRS segment from the average QRS segment present in the data. The interpolation
is performed via a 2nd-order spline. An averageqrs_sqi of 1 corresponds to heartbeats
that are the closest to the average sample and an averageqrs_sqi of 0 corresponds
to the most distant heartbeat from that average sample. The authors note that 1
does not necessarily means ”good”: if the average of the QRS windows are bad, than
being close to the average will not be optimal. Finally, Neurokit2 also supports the
method specified by Zhao et al. [105].

2.2 ECG Denoising

Wavelet Denoising: Wavelets are an established method of denoising signals by
discrete wavelet decomposition (DWT), thresholding the decomposed coefficients,
and inverse wavelet decomposition (IDWT) [8, 16, 99].

The discrete wavelet transform works as follows [78]. The input signal x is
calculated by passing it through a series of filters. First x is convolved with a low-pass

1https://github.com/neuropsychology/NeuroKit.py/blob/master/neu-
rokit/bio/bio_ecg.py#L328

2https://github.com/neuropsychology/NeuroKit/blob/master/neurokit2/ecg/ecg_qual-
ity.py#L16
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filter with impulse response g. x is also convolved with high-pass filter h.

ylow[n] = (x ∗ g)[n] =
∞∑

k=∞

x[k]g[n− k]

yhigh[n] = (x ∗ h)[n] =
∞∑

k=∞

x[k]h[n− k]

Figure 2.1: Cascading representation of DWT [44]. At each level, the signal is
decomposed into low and high frequencies. The input signal must be a multiple of 2n
where n is the number of levels. E.g. a signal with 32 samples, frequency range 0 to
fn and 3 levels of decomposition, 4 output scales are produced.

Figure 2.2: Frequency domain representation of DWT [43]

ylow is known as the approximation coefficients, and yhigh is known as the detail
coefficients. Now, since half of the frequencies of the signal have been separated, we
can down-sample the signal by a factor of 2 with loss according to Nyquist’s Rule.
We downsample ylow and process it again by passing it through a new low-pass filter
g and high-pass filter h. This process is then repeated, as shown in Figure 2.1 and
Figure 2.2. Finally, g and h have a special relationship. They are known as filter
coefficients and fit the properties of compactness and orthogonality.
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gk = (−1)k)hn−k−1, k ∈ {0, . . . , n− 1}

For ECG denoising, it is common to use the wavelet Daubechies-4 (db4)3 , the
most compact of which has h = [1+
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For example, Singh et al. [96] presents a selection procedure of mother wavelet
basis functions applied for denoising of the ECG signal in wavelet domain while
retaining the signal peaks close to their full amplitude. The obtained wavelet based
denoised ECG signals retain the most important information contained in the original
ECG signal–the ECG peaks. Similarly, Alfaouri et al. [3] presents an approach
based on the threshold value of ECG signal determination using Wavelet Transform
coefficients that performs better than Donoho’s method [16] in terms of signal to noise
ratio (SNR) due to better thresholding functions on the decomposed coefficients.

However, it is important to point out that many of these methods are testing on
primarily white noise, such as gaussian noise, and that more complicated sources of
noise are lacking.

Empirical Mode Decomposition (EMD) Empirical Mode Decomposition is
a data-driven decomposition method that does not require any basis, unlike DWT
[21, 86]. The goal of EMD is to decompose the signal into a sum of Intrinsic Mode
Functions (IMFs), which are like DWT coefficients. Ideally, this decomposes a signal
into physically meaningful components. When all IMFs are summed up, the original
signal is returned. An IMF is defined as 1) function with equal number of extrema
and zero crossings (or at most differed by one) and 2) The envelopes connecting the
local minima and local maxima of an IMF have a local average of zero [97, 103].

The process of extracting IMFs from a given input signal is called the ”sifting
process”. Given a signal x, we first extract all the local minima and local maxima.
Then, let the upper envelop eu be a cubic spline curve fitted on all the local maxima.
Similarly, let the lower envelop el be a cubic spline curve fitted on all the local minima.
Let the average envelope of the upper and lower envelopes be m1 = (eu + el)/2. The

3http://wavelets.pybytes.com/wavelet/db4/
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first proto-IMF is the original signal minus the average envelope

h1 = x−m1

The sifting process is iteratively performed again on h1 as the input signal until
we obtain proto-IMF hk that satisfies the stopping criterion. Then, we let the c1 = hk

be the first IMF. A commonly used stopping criterion is the Sum of Difference (SD)

SD =
T∑
t=0

|hk−1(t)− hk(t)|2

h2
k−1

When the SD is smaller than a threshold, the first IMF c1 is obtained, which is
written as

x− c1 = r1

Note that the residue r1 still contains useful information. We can therefore treat
the r1 as a new signal and reapply the sifting procedure with the stopping criterion
to obtain:

ri−1 − ci = ri i = 1, . . . , N

The whole procedure terminates when the residue rN is either a constant, a
monotonic slope, or a function with only one extremum. Since each IMF is simply a
linear relationship with the other IMFs and the original signal, we can write:

x =
N∑

n=1

cn + rN

Weng et al. [103] proposed am ECG denoising method based on Empirical Mode
Decomposition, which is able to remove high frequency noise with minimum signal
distortion. This is accomplished by adding an additional step so that QRS signals are
preserved, since otherwise, their amplitudes would be decreased. Evaluation on the
MIT-BIH database show that the proposed method is successful in denoising ECG
with added Gaussian noise.
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Fully Convolutional Denoising Autoencoders: Recently, Neural Networks for
the use of ECG denoising have been making great strides in terms of both accuracy
and speed [79]. Chiang et al [11] introduced a wavelet denoising method using fully
convolutional denoising autoencoders (DAE) for ECG. The proposed FCN-based DAE
can also perform compression due to the encoder part of the architecture. Evaluation
was performed on the MIT-BIH Arrhythmia database [67] with added noise signals
from the MIT-BIH Noise Stress Test database [68]. Convolutional Autoencoders
(CNN AEs) use 1D convolutions instead of recurrent neural networks (RNNs), which
make them faster to train and more accurate. Results conducted on noisy ECG signals
of different levels of noise show that the FCN achieves better performance compared
to deep fully connected neural networks and convolutional neural network-based
(without autoencoder) denoising models with lower RMSE and higher Signal to noise
ratio (SNR) improvement.

Autoencoders (AE) denoise signals by data compression and reconstruction. First,
a neural network is used to embed signal into a lower dimensional embedding. Then,
a NN is used to reconstruct the signal from the embedding. The model is trained on
noisy data as input with a mean squared error loss of the output and the clean data.
This has the practical effect of training the model to learn the semantics of the input
while ignoring the noise. Figure 2.3 shows this process, along with an example model
architecture for the encoder and decoder. Note that the input to the encoder portion
of the autoencoder may be a processed input. For example, [33] showed that using
the ECG decomposed into coefficients via discrete wavelet transform as features to a
Long Short-Term Memory (LSTM) Autoencoder was highly useful for arrhythmia
classification. Because of this, we employ a similar method for denoising. In addition
to the wavelet coefficients, we also pass in the original signal as input, with the
inuition that the more information that the AE has, the better it can potentially
perform.

2.3 Open Source Datasets

There are only a few common, open, publicly available, and well-documented datasets
for evaluating ECG signal quality. The following is a list of some of the most common
datasets.
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Figure 2.3: Example Convolutional Autoencoder Architecture. The input is noisy
data and the output is the cleaned data.

MIT-BIH Arrhythmia Database [62, 66, 67] This is an open access dataset
available on PhysioNet [26] collected and maintained by the Beth Israel Deaconess
Medical Center and MIT between 1975 and 1979. It contains contains 48 half-hour
two-channel ambulatory ECG recordings, from 47 subjects. 23 recordings were chosen
at random from a mixed population of inpatients (about 60%) and outpatients (about
40%) at Boston’s Beth Israel Hospital. 25 more recordings were selected to include less
common, but clinically significant, arrhythmias that would not be well represented in
a random sample. The recordings were digitized at 360 hz per channel with 11-bit
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resolution over a 10 mV range. Two or more cardiologists independently annotated
almost every QRS signal. Disagreements were resolved to obtain the computer-
readable reference annotations for each beat (approximately 110,000 annotations in
all) included with the database.

Since this is an arrhythmia database and not a signal quality database, it is
common to the signals such that any beat that is not labelled as ”Normal” is noisy.

MIT-BIH Noise Stress Test Database (NSTDB) [68] This is a database also
available on PhysioNet [26],includes 12 half-hour ECG recordings and 3 half-hour
recordings of noise typical in ambulatory ECG recordings. The noise recordings were
made using physically active volunteers and standard ECG recorders, leads, and
electrodes; the electrodes were placed on the limbs in positions in which the subjects’
ECGs were not visible.

The three noise records were assembled from the recordings by ECG signals that
contained predominantly baseline wander (bw), muscle (EMG) artifact (ma), and
electrode motion artifact (em) noise. Baseline wander noise is usually low-frequency
noise caused by motion. Muscle EMG artifact is usually electrical noise generated
by muscle activity near the electrode. Electrode motion artifact is intermittent
mechanical noise, and is generally considered the most troublesome, since it may
mimic the appearance of beats and cannot be removed easily by simple filters.

The noisy ECG recordings were created by the script nstdbgen, a script provided
in the database to manually add noise to clean signals. Using two clean recordings
(118 and 119) from the MIT-BIH Arrhythmia Database, calibrated levels of noise from
record ’em’ were added. Noise was added beginning after the first 5 minutes of each
record, during two-minute segments alternating with two-minute clean segments. Since
the original ECG recordings are clean, the correct beat annotations are known even
when the noise makes the recordings visually unreadable. The reference annotations
for these records are simply copies of those for the original clean ECGs.

The PhysioNet/Computing in Cardiology Challenge 2011 dataset: Also
known as the PICC dataset, this is another common dataset [94] found on PhysioNet
[26]. The dataset includes ten-second recordings of twelve-lead ECGs, consisting of
standard 12-lead ECG recordings (leads I, II, II, aVR, aVL,aVF, V1, V2, V3, V4, V5,
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and V6) with full diagnostic bandwidth (0.05 through 100 Hz). Each lead is recorded
simultaneously for a minimum of 10 seconds (and generally only a maximum of 10
seconds) at 500 Hz with 16-bit resolution. The annotation was conducted by nurses,
technicians, and volunteers with varying amounts of training.

ECGs collected for the challenge were reviewed by a group of annotators with
varying amounts of expertise in ECG analysis, ranging from volunteers to experts,
in blinded fashion for grading and interpretation. 3 to 18 annotators independently
examined each ECG, assigning it a letter grade (A (0.95): excellent, B (0.85): good,
C (0.75): adequate, D (0.60): poor, or F (0): unacceptable) for signal quality. The
average grade was calculated in for each record, and fell into 1 of 3 groups:

Group 1 (acceptable): If average grade ≥ 0.70, and at most one grade is F. Group
2 (indeterminate): If average grade ≥ 0.70 or more, but two or more grades were F.
Group 3 (unacceptable): If average grade is < than 0.70.

Approximately 70% of the collected records were assigned to group 1, 30% to
group 3, and fewer than 1% to group 2, reflecting a high degree of agreement among
the annotators. For the purposes of this experiments, we use the annotations from
this dataset that are explicitly annotated ACCEPTABLE vs UNACCEPTABLE.

2.4 Signal Quality in Other Waveforms

Although most work in the signal quality space is specifically regarding ECG, many
of the metrics can be applied in the general case. For general signal quality, we use
time series featurizations like means, ranges, standard deviations, sample entropy,
and more. Furthermore, we adapt some features inspired by ECG SQIs, like percent
of flat line in a signal, complexity measures like Hjorth Descriptor [25]. A full list of
the adapted SQIs for both ECG and other signals, please see the file sqis.py in the
released python package.

For example, Plethysmography (PPG) signal quality has many of the same metrics
as ECG. Elgendi et al. [18] proposed eight SQIs to be tested and evaluated on their
abilities to quantify ”goodness” of PPG. The dataset consists of heat stress PPG
data collected as part of a National Critical Care and Trauma Response Centre
(NCCTRC) project [7]. This dataset has a total of 160 signals which are then further
processed to 106 PPG recordings at 60 s each. The SQIs consist of: 1. Perfusion, also
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known as the difference of the amount of light absorbed through the pulse of when
light is transmitted through the measurement area. Perfusion = ymax−ymin

|x̄| × 100. 2.
Skewness, a measure of the symmetry (or the lack of it) of a probability distribution.
3. Kurtosis 4. Entropy 5. Zero crossing rate 6. Signal-to-noise ratio 7. Matching of
multiple systolic wave detection algorithms 8. Relative power.

2.5 Outlier Detection

Let us consider 4 popular Outlier Detection methods

K-Nearest Neighbor This is a classic method of detecting outliers that is based
on the distance of a point from its kth nearest neighbor. Although there are numerous
ways to calculate a kth nearest neighbor, the details will be omitted here. However,
to aid in efficiency, it is possible to rank each individual point on its distance to its
kth nearest neighbor and declare the top n points in this ranking to be outliers. Since
anomalies should be far from all neighbors, they should have a higher distance than
normal points. Additionally, it is appropriate to think of the outlier score as the
distance to a sample’s kth nearest neighbor. [4, 82]

Isolation Forest The Isolation Forest algorithm seeks to separate anomalous
observations from other observations by computer the average number of random
splits needed for an observation to reach a leaf node.

First, an isolation forest is an ensemble of decision trees. The trees are constructed
via randomly selecting a feature and then randomly selecting a split value between
the maximum and minimum values of the selected feature. Then, selecting another
feature, selecting another value to split on, and so on. Random partitioning produces
noticeably shorter paths for anomalies, as they should be outliers in some way, and
therefore easier to split out. Hence, when a forest of random trees collectively produce
shorter path lengths for particular samples, they are highly likely to be anomalies.

Since recursive partitioning can be represented by a tree structure, the number
of splittings required to isolate a sample is equivalent to the path length from the
root node to the terminating node. Thus the outlier score is the average number of
splittings required for a sample to reach a leaf (over the forest) [59, 60].
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One-Class Support Vector Machine A one-class Support Vector Machine (SVM)
can be thought of as a model that is fitted to the data, where anomalous data is not
well predicted by it. A standard SVM with 2 classes fits the data using a hyperplane
with the largest possible margin between data of both classes. Although One-Class
SVM is similar, instead of using a hyperplane to separate two classes of instances,
it project points to a higher dimensional space and uses a minimum hypersphere
to fit all the data points in the feature space. Finally, the points lying outside the
hypersphere are outliers, since anomalies will be far away from the other points [92].

AutoEncoder Using neural networks, AutoEncoders (AEs) map data into lower di-
mensional embedding space, and then reconstruct data from the respective embedding.
AEs can be trained in an unsupervised fashion like PCA, and can be used to detect
outliers via reconstruction error. Ideally, anomalies will have higher reconstruction
error as the model is not trained on it as much as regular data [1].
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Chapter 3

Methodology and Experiments

3.1 Outlier Detection Via Featurization

3.1.1 Case Study: Reproducing ECG Signal Quality
Classification Results on the Physionet 2011 Challenge

The Physionet 2011 ECG signal quality classification challenge was created to quickly
access the quality of ECG. There has been numerous publications regarding this
challenge dataset, but much of the work that currently exists is not implemented in
code. Rather, the methods are only discussed on paper. Our main goal is to answer
the following question: Can we reproduce experiments from baseline work?

The Physionet 2011 Challenge Data is split into 3 annotated sets: Set-A, Set-B,
and Set-C. Only Set-A is fully public, so cross validation is needed. Specifically,
we use 5-fold group split cross-validation on the subjects, so we do not have any
overlapping subjects in the train / test split. The dataset ends up having 998 12-lead
ECG recordings, each at 10 or more seconds, recorded at 500 Hz. The task is still
relatively simple, as we are using only the explicitly labelled clean and noisy data
provided in the dataset files. This is a straightforward Binary classification: 0=not
noisy, 1=noisy.

For our experiments, we consider 8 individual methods, as well as 1 combined
method that include features from all 8 methods (See Figure 3.1). Additionally, as
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Figure 3.1: The 8 methods are shown in the table on the right highlighted in red,
with their corresponding SQI features.

some of the SQIs depend on the existence of multiple leads of ECG (i_SQI and
pca_SQI), we run an experiment with only single-lead SQIs, that is, with all SQIs
except for i_SQI and pca_SQI. In the real world (and also in the pig dataset), we
may not have access to more than 1 ECG signal. The specifics are in the full list of
the adapted SQIs for both ECG and other signals (please see the file sqis.py in the
released python package). Let us use the features that each of the 8 papers use as
input to a Random Forest classifier, to account for subtle differences in modeling.

The following list is a description of each SQI, in order of introduction:
• Li et al. 2007 [52]

b_SQI - ratio of agreed beats detected by 2 algorithms

i_SQI - ratio of agreed beats detected by 2 leads

k_SQI - kurtosis

p_SQI - Power Spectrum Distribution
• Clifford et al. 2012 [15]
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SQIs listed in Li et al. 2007

s_sqi - skewness

f_sqi - percentage of flat signal

bas_sqi - measures Relative Power in the low frequency baseline
• Behar et al. 2013 [5]

SQIs listed in Li et al. 2007

s_sqi - skewness

pca_sqi - sum of first 5 eigenvalues of pca decomposition
• Li et al. 2014 [55]

SQIs listed in Li et al. 2007

bs_sqi - baseline wander check

e_sqi - energy of detected QRS waveforms

hf_sqi - relative amplitude of high frequency noise

pur_sqi - Hjorth complexity (compares the signal’s similarity to a pure
sine wave)

rsd_sqi - relative standard deviation of QRS

ent_sqi - sample entropy
• Orphanidou et al. 2015 [74]

orphanidou2015_sqi - An SQI that measures the correlation between QRS
and the mean QRS

• Neurokit [61]

averageQRS_sqi - A Neurokit function, An SQI that measures euclidean
distance between QRS and the mean QRS

• Zhao et al. 2018 [105]

zhao2018_sqi - A Neurokit function, uses pSQI, kSQI and basSQI
• Geometric ECG Features [10] - Median, IQR, and Slope of Heart Rate, Standard

deviation of R-peak intervals, Sample entropy, approximate entropy, Absolute
power, Relative power, and ratio of LF and HF bands
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• Combined: All features previously mentioned

Results on Open Source Dataset

Figure 3.2: Results on subject-based 5-fold cross validation and Random Forest with
only single-lead features

Method AUC Accuracy
li2007 0.793 ± 0.033 0.869 ± 0.013
clifford2012 0.829 ± 0.041 0.877 ± 0.014
behar2013 0.803 ± 0.035 0.869 ± 0.013
li2014 0.830 ± 0.041 0.882 ± 0.013
orphanidou2015 0.826 ± 0.028 0.863 ± 0.012
averageqrs 0.700 ± 0.025 0.858 ± 0.013
zhao2018 0.549 ± 0.013 0.792 ± 0.002
geometric 0.807 ± 0.028 0.875 ± 0.013
all 0.835 ± 0.033 0.888 ± 0.012

Table 3.1: Table of AUCs and Accuracies of 8 methods on subject-based 5-fold cross
validation and Random Forest with only single-lead features

We see the results in Figure 3.2 and in Table 3.1. Additionally, we see that,
compared to the original PhysioNet/Computing in Cardiology Challenge 2011 results
in Table 3.2, the accuracy performance of the random forest ran on single-lead features
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Participant Accuracy
Xiaopeng Zhao 0.914
Benjamin Moody 0.896
Lars Johannesen 0.880
Philip Langley 0.868
Dieter Hayn 0.834
Václav Chudáček 0.833
Unofficial entries
George Moody 0.894
Ikaro Silva 0.802

Table 3.2: The PhysioNet/Computing in Cardiology Challenge 2011 Official Results:
Event 2 (open-source, open data set B), the most comparable event to our case.
However, this is still not exactly a proper comparison, since we do not have access to
data set B.

is comparable 3rd on the leaderboard, as shown in Table 3.1, suggesting that we are
able to reproduce simple baselines. Furthermore, we see that neurokit’s methods do
not fare well under actual evaluation, especially zhao2018.

3.1.2 Case Study: Using SQIs to Improve Real vs
Artifactual Alert Detection

High rates of false alarms for cardiorespiratory instability (CRI) in monitored patients
cause alarm fatigue. Do our ECG SQIs help classification of artifacts in real-world
human data to help prevent these false alarms?

Our dataset is a private dataset PPINNC – a set of time series data from Intensive
Care Unit patients from University of Pittsburgh Medical Center. The PPINNC
project was created to look at episodes of Cardio-Respiratory Insufficiency (CRI)
with two primary objectives: 1. The first objective is to distinguish between real and
artifactual CRI alerts. 2. The second objective is to predict when a patient is likely
to have a CRI in the future.

There are 3 types of alerts in this dataset, corresponding to the following vital
signs: SpO2, Heart Rate (HR), Respiratory Rate (RR). The vital sign timeseries are
featurized into 6537 3-min windows, every 20 seconds. In the end, we end up with
255 features calculated from Pleth and ECG, including entropy, linear trends, heart
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rate features, and more. This is a binary classification: Real Alert=1, Artifactual
Alert=0, on the given features.

To maintain consistency with existing methods, we will use Random Forest, with
patient level random splits (10x) for cross evaluation.

Figure 3.3: Plots of ROC Curves for all 3 alert types, with and without additional
SQIs. For most alerts, we do improve AUC.

As seen in Figure 3.3, the SQIs that we added generally slightly improve AUC,
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even with the extensive list of 255 precomputed features. Only the SpO2 ROC
does not improve. RR alert classification improves the most in both true positives
and true negatives. This shows that SQIs are encoding useful information, and are
useful for classification of artifacts. Although this is a limited case study, further
investigation should be done as to the type of SQIs that most significantly affact
model performance.

3.1.3 Outlier Detection

Outlier Detection On PhysioNet Dataset

Let us consider 4 popular Outlier Detection methods: K-Nearest Neighbor, Isolation
Forest, One-Class SVM, and AutoEncoder. First, we choose the best model based
off of the PhysioNet/Computing in Cardiology Challenge 2011 dataset and 5-fold
cross-validation.

For implementation of these algorithms, we follow the example in the open-source,
anomaly detection Python package PyOD1. PyOD implements 30 anomaly detection
algorithms, with evaluation results on 55 benchmark datasets. Specifically, each model
is instantiated as in the example code2, trained on the train split of the Physionet
Dataset, and then evaluated on the test split. On the training set, each model is
trained on a mix of clean and noisy signals, with the percentage of noisy signals in the
dataset KNOWN. This is so that each model can find its own threshold for anomaly
classification Finally, each model is tested to see if its predicted outliers match the
noise classification in the test split.

We can use all the single-lead SQIs from the previous case study. To maintain
fairness, we train all models in an unsupervised fashion. Secondly, once we have
determined the best model, we can use it and apply it to the pig data as mentioned
in the introduction.

From the results in Figure 3.4 and in Table 3.3 we see that Isolation Forest
performs the best in all metrics. So, we will use Isolation Forest for the real-world
pig data.

1pyod.readthedocs.io
2pyod.readthedocs.io/en/latest/example.html
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Figure 3.4: Plots of ROC Curves for all 4 different Outlier Detection algorithms on
subject-based 5-fold cross validation

Method Train AUC Train Accuracy Test AUC Test Accuracy
KNN 0.421 ± 0.035 0.649 ± 0.012 0.396 ± 0.013 0.693 ± 0.003
IForest 0.832 ± 0.024 0.843 ± 0.020 0.830 ± 0.006 0.844 ± 0.004
OCSVM 0.380 ± 0.033 0.157 ± 0.015 0.492 ± 0.062 0.646 ± 0.015
AutoEncoder 0.819 ± 0.020 0.842 ± 0.019 0.819 ± 0.007 0.843 ± 0.003

Table 3.3: Results of 4 different OD algorithms on subject-based 5-fold cross validation.

Outlier Detection On Pig Dataset

However, there are a few things to consider in the real-world pig dataset. First, it
is important to train outlier detectors on ”normal” data so that they are actually
sensitive to outliers. Since the pig hemorrhage experiment only starts after a certain
amount of time, most data before this baseline time should be discarded, as it is quite
noisy. Furthermore, we should also not use the end of the recording, as it may also
be quite noisy (See Figure 3.5).

Figure 3.5: Example of Noise in the ECG Vital Sign Time Series Signal for the Pig
Data. The raw signal is shown in blue, with annotations indicated by the black
vertical lines.
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For brevity, we will only discuss Pig08; the full list of results can be found in
Appendix B. First off, we show the results of all the outliers in the form of a plot,
scaled to the original time-series data.
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Figure 3.6: Results on all of the Pig08 waveforms (where IForest is fit individually
on each signal). The Raw signal in shown in blue, and the scaled Anomaly score is
shown in red. 32
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Figure 3.7: Results on ART (IForest is fit individually on each signal). The Raw
signal in shown in blue, and the scaled Anomaly score is shown in red.
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Figure 3.8: Zoomed in example annotation corresponding to a spike in the anomaly
score.

Figure 3.9: Zoomed in example annotation corresponding to a spike in the anomaly
score.

From Figure 3.6, we see that obvious section of noise, such as the start (red box),
has generally high anomaly score. However, we know from our clinician partners that
ART is the most pertinent signal, so let us focus on that signal in particular.
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From Figure 3.7, we see that many of the highly anomalous sections all correspond
to real-world failures noted by the clinicians. For example, Figure 3.8 shows an
example of a spike corresponding to the following annotation: ”We stopped bleed at
MAP <40 but SvO2 73,but with bad signal quality. Will get an invivo cal of the
SvO2 now and start the WAIT interval”. Figure 3.9 shows an example of a spike
corresponding to the following annotation: ”We really scewed up. The norepi pump
stopped becuase of air in th elone. We were unable to flush the lines but manually
cleared the line using an Alan wrench and the pump head off the pump. But when we
reattached the pump restarted a prime flush of 25 ml, which caused a massive OD of
Norepi MAP >180, slowly recovering”.

This shows that the outlier detector on the SQI features is working properly for
this case. Due to limitations, a deep analysis of each individual high anomalous area
cannot be analyzed. However, this serves as a good first step for automatic detection.

3.2 ECG Denoising

We manually add noise from the MIT-BIH dataset to control the type and variety
of noise added, without using nstdbgen, as it performs a custom procedure that is
irrelevant to our use case.

3.2.1 Results on Open Source Dataset

We use 2 public datasets to test our methods. MIT-BIH arrhythmia and MIT-BIH
arrhythmia noise stress test databases. The noise stress dataset is simply a collection
of noise records that can be added onto clean signals from the MIT-BIH arrhythmia
dataset. It contains noise records that exemplify baseline wander, or low frequency
noise caused by motion. Muscle EMG artifact, or Electrical noise generated by muscle
activity near the electrode. Finally, it also contains Electrode Motion artifact, or
intermittent mechanical noise, which can mimic ECG beats.

For 2 clean records in the MIT-BIH dataset (118 and 119), we manually add 5
different types of noise (Electrode Motion artifact (EM), Baseline Wander (BW),
Muscle Artifact (MA)), Gaussian Noise (GN), as well as a combination of all 4
previous noises at different levels of SNR (-6, 0, 6, 12, 18, 24). All the noise was
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taken from the MIT-BIH noise stress test database except Gaussian Noise, which we
added. Finally, we split ECG signals into windows of length 512, which is required
by the autoencoder denoising method. After splitting data into training and testing
sets, we end up with 9408 samples for each.

We will compare 3 main methods: Wavelet denoising, EMD denoising, and finally,
Convolutional Autoencoder denoising as described in the Literature Review Section
2.2. As 2 additional baselines, we also compare using a simple 1D convolutional
network and an LSTM to directly predict the clean signal from the noisy signal. The
full implementation details of the adapted methods are in the file denoising.py in
the released python package.

The evaluation Metrics consist of Mean Squared Error, Signal to noise ratio (SNR)
measured in terms of decibels (dB), and finally, a Special Evaluation Metric specific
for ECGs: ECGSNR [68]. For each method, the input will be a noisy signal, and the
output is expected to be a cleaned version of that signal.

SNR = 10 log10(
Ps

Pn

)

Where Ps is the power of signal in watts, and Pn is the power of noise in watts.

ECGSNR = 20 log10(
S

N
)

Where S is average peak-to-peak amplitude of QRS complexes, and N is the average
Root Mean Squared Error over 1 second windows of noise.
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Noise Type dB Wavelet MSE EMD MSE LSTM MSE CNN MSE AE MSE
em -6 0.0824 0.0684 0.0356 0.0237 0.0187
em 0 0.0527 0.0483 0.0236 0.0151 0.0104
em 6 0.0276 0.0337 0.0122 0.0094 0.0067
em 12 0.0101 0.0213 0.0059 0.0066 0.0055
em 18 0.0028 0.0171 0.0036 0.0048 0.0048
em 24 0.0008 0.0177 0.0030 0.0036 0.0046
ma -6 0.0839 0.0853 0.0255 0.0222 0.0109
ma 0 0.0612 0.0681 0.0164 0.0148 0.0076
ma 6 0.0249 0.0370 0.0084 0.0096 0.0063
ma 12 0.0097 0.0246 0.0046 0.0058 0.0054
ma 18 0.0026 0.0187 0.0034 0.0045 0.0047
ma 24 0.0010 0.0189 0.0031 0.0042 0.0046
bw -6 0.0794 0.0813 0.0176 0.0145 0.0063
bw 0 0.0608 0.0655 0.0114 0.0107 0.0060
bw 6 0.0378 0.0468 0.0093 0.0078 0.0057
bw 12 0.0178 0.0296 0.0061 0.0060 0.0057
bw 18 0.0077 0.0221 0.0037 0.0046 0.0045
bw 24 0.0012 0.0188 0.0029 0.0044 0.0051
gn -6 0.0885 0.0941 0.0310 0.0314 0.0272
gn 0 0.0437 0.0549 0.0194 0.0168 0.0144
gn 6 0.0221 0.0364 0.0092 0.0080 0.0066
gn 12 0.0066 0.0212 0.0046 0.0055 0.0054
gn 18 0.0026 0.0184 0.0033 0.0044 0.0047
gn 24 0.0011 0.0174 0.0030 0.0038 0.0044
all -6 0.0653 0.0685 0.0311 0.0359 0.0229
all 0 0.0487 0.0566 0.0192 0.0205 0.0105
all 6 0.0292 0.0412 0.0094 0.0110 0.0065
all 12 0.0113 0.0239 0.0048 0.0067 0.0055
all 18 0.0035 0.0187 0.0033 0.0046 0.0048
all 24 0.0011 0.0171 0.0029 0.0042 0.0045

Table 3.4: Mean Squared Error of the predicted output ECG vs the actual clean
ECG for all 5 compared methods, at each type of noise and decibel.
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Noise Type dB Wavelet SNR EMD SNR LSTM SNR CNN SNR AE SNR
em -6 3.3488 1.6169 -0.1700 -0.4107 -0.3583
em 0 2.5328 0.8349 -0.2597 -0.5062 -0.2442
em 6 2.0005 0.2656 0.0340 -0.4531 -0.1242
em 12 1.2296 -0.4469 0.2928 -0.4731 -0.0892
em 18 0.4950 -1.2064 0.2416 -0.4928 -0.1079
em 24 0.1995 -1.7164 0.2053 -0.2091 0.0908
ma -6 -7.5434 -8.9241 -2.6498 -1.1290 -0.5028
ma 0 -6.0144 -7.8036 -1.8899 -0.7218 -0.2556
ma 6 -1.9515 -3.7004 -0.9747 -0.4304 -0.0682
ma 12 0.1385 -1.6640 -0.0361 -0.3112 0.0185
ma 18 -0.3299 -2.1604 -0.0155 -0.5456 -0.1067
ma 24 -0.3845 -2.3505 0.0163 -0.4558 -0.0183
bw -6 3.9529 3.0027 -1.5665 -0.7429 -0.3380
bw 0 3.4577 2.4977 -0.4652 -0.5566 -0.1517
bw 6 2.7071 1.4575 0.0051 -0.4428 -0.0817
bw 12 1.8407 0.7664 0.1834 -0.3855 0.0521
bw 18 0.2811 -1.5652 0.0798 -0.6456 -0.2407
bw 24 -0.1849 -2.1842 0.0833 -0.0887 0.2695
gn -6 -8.4643 -9.7113 -1.8837 -1.4672 -1.3796
gn 0 -7.4742 -9.3032 -1.5990 -0.3594 -0.3191
gn 6 -4.6856 -6.6857 -0.9924 -0.4773 -0.2842
gn 12 -1.8117 -3.4528 -0.2708 -0.3207 -0.0402
gn 18 -0.8752 -2.7504 -0.0539 -0.5255 -0.1084
gn 24 -0.4862 -2.3357 0.0305 -0.6060 -0.1421
all -6 -4.8649 -6.5392 -1.8861 -0.8658 -0.8130
all 0 -3.7288 -5.3820 -1.7129 -0.6127 -0.3518
all 6 -2.0208 -3.8272 -0.9819 -0.4693 -0.1992
all 12 -0.6469 -2.4161 -0.1546 -0.3931 -0.0426
all 18 -0.4290 -2.3001 0.0157 -0.5526 -0.0947
all 24 -0.2572 -2.2011 0.0856 -0.6421 -0.1514

Table 3.5: Signal-to-noise Ratio of the predicted output ECG vs the actual clean
ECG for all 5 compared methods, at each type of noise and decibel. This default
metric is not a good measure of model performance. 38
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Noise Type dB
Wavelet

ECGSNR
EMD

ECGSNR
LSTM

ECGSNR
CNN

ECGSNR
AE

ECGSNR
em -6 72.7573 72.6133 72.6275 72.5771 72.8835
em 0 72.7617 72.6890 72.6611 72.7470 73.0096
em 6 72.7309 72.6504 72.8036 72.8419 73.0008
em 12 72.8836 72.8321 72.9016 72.8804 73.0042
em 18 72.9656 72.9479 72.9744 72.9426 73.0344
em 24 73.0054 73.0144 73.0186 72.9853 73.0464
ma -6 72.7239 72.5573 72.3124 72.5691 72.9191
ma 0 72.8369 72.6490 72.7029 72.8377 73.0165
ma 6 72.9650 72.8822 72.8908 72.8986 73.0058
ma 12 72.9889 72.9876 72.9559 72.9646 73.0327
ma 18 73.0051 73.0115 72.9972 72.9858 73.0325
ma 24 73.0295 73.0207 73.0220 72.9999 73.0419
bw -6 73.0248 73.0790 72.9384 72.9564 72.8977
bw 0 73.0278 73.0589 72.9748 72.9814 72.9776
bw 6 73.0193 73.0410 72.9983 72.9488 73.0097
bw 12 73.0306 73.0410 73.0356 73.0073 73.0169
bw 18 73.0331 73.0638 73.0614 73.0014 73.0193
bw 24 73.0351 73.0611 73.0458 72.9586 73.0157
gn -6 72.3538 72.4933 72.4382 72.2511 73.0911
gn 0 72.2418 72.3766 72.3094 72.3926 73.1185
gn 6 72.2117 72.2008 72.6663 72.7931 73.0894
gn 12 72.6332 72.6808 72.8384 72.8757 73.0528
gn 18 72.8911 72.8731 72.9220 72.8898 73.0604
gn 24 72.9486 72.9725 72.9605 72.9456 73.0331
all -6 72.4245 72.1980 72.2271 72.2653 72.8483
all 0 72.3719 72.2060 72.3703 72.7184 72.9845
all 6 72.5968 72.5452 72.7478 72.8409 73.0508
all 12 72.8531 72.8247 72.8724 72.9013 73.0652
all 18 72.9441 72.9559 72.9469 72.9592 73.0419
all 24 72.9891 72.9968 73.0025 72.9604 73.0114

Table 3.6: ECG Signal-to-noise Ratio of predicted ECG vs the clean ECG for all
5 compared methods, at each type of noise and decibel. This specialized metric
measures the noise ratio between the average peak to peak (QRS) amplitudes and
the root mean square of the noise.
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We see that, from both of the tables with reasonable metrics: Table 3.4 and Table
3.6, Convolutional Autoencoder generally performs the best at denoising ECG. In
the Mean Squared Error case, it would be interesting to investigate methods where
wavelet denoising is used for higher SNR and Convolutional Autoencoders are used for
lower SNR. For the ECG SNR case, future work could focus on specifically preserving
the amplitudes of the QRS signal, especially for the baseline wander noise type.

3.2.2 Case Study: Effects of ECG Denoising on Real vs
Artifactual Alert Detection

One interesting application of ECG denoising is in the case of Real vs Artifactual Alert
Detection, as in Section 3.1.2. Let the problem setup be the same as Section 3.1.2,
except in the featurization. Since the 255 precomputed feature were computed with
raw ECGs, and we unfortunately do not have access to the featurization functions,
we instead do an ablation study with ONLY the SQIs. In this case, instead of passing
the potentially noisy, raw ECG signal to the SQI featurizers, we pass a denoised
version of the ECG instead.

This denoised version is obtained by resampling the raw ECG signal to a hz of
125 and splitting it into windows of length 512 for input to the CNN Autoencoder.
As before, we use Random Forest with 10x patient level random splits for cross
validations for all 3 types of alerts: SpO2, Heart Rate, and Respiratory Rate.
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Figure 3.10: Plots of ROC Curves for all 3 alert types, with and without additional
SQIs calculated on denoised ECG. For most alerts, we do improve AUC.

From Figure 3.10, we see that the AUC performance of the Random Forest
is generally better compared to the results ran on Raw ECG signals in Figure 3.3,
particularly for Heart Rate as well as Respiratory Rate. SpO2 AUC stays the same for
both cases, which is consistent with the original results. This increase in performance
indicates that our denoising algorithm is working, as it is removing noise from clean
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signals, and failing to remove noise from noisy ones, increasing the difference between
the 2 classes. This effect helps the Random Forest model more efficiently distinguish
between real and artifactual alerts.

3.2.3 Results on Pig Data

Although there are only 25 pigs, each signal is of multiple hours long, and contains
gigabytes of data. Additionally, we do not have a gold standard of a clean ECG.
However, we are able to see visually, the difference between raw signals and cleaned
outputs.

First, we resample the pig signals to 125 hz and windows of length 512 in
accordance with our open source dataset. Then, we pass the original ECG signals
through highpass Butterworth to remove slow drift and dc offset [61]. We also filter
the signal with a powerline filter to remove it [61].

Finally, we pass the signal to our CNN Autoencoder for final processing. As a
result, we obtain cleaned ECG signals that look like the following Figure 3.11.

Figure 3.11: ECG Denoising Results on the Pig dataset. The blue is the original
signal, and the orange is the cleaned signal.
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From Figure 3.11, we can see that the cleaning process is able to at least remove
some artifacts that occur in the original signal. For example, we see that in the first
figure, the baseline wander component is removed. Additionally, we see that the CNN
Autoencoder is able to preserve the peak to peak alignment quite well.

However, there are still issues to be solved, as in the bottom right figure, in cases
of extreme noise, the algorithm may not be able to accurately denoise the signal. The
CNN Autoencoder looses information in the first 2/3 of the time window. This could
be related to hyperparameter choice (kernel size, filters), and the strict requirement
of the neural network for a fixed length input time series. Section 3.3 addresses future
work to tackle and potentially solve these issues.

3.3 Discussion

Signal Quality is vitally important in medical applications and machine learning for
healthcare. However, these signals are often corrupted with different kinds of noises
and artifacts. In this work, we studied common baseline methods in Signal Quality
Indices, Outlier detection, and Signal Denoising. We demonstrated the capability
of SQIs in reproducing 8 common ECG signal quality classification methods in the
2011 PhysioNet Challenge dataset. We further demonstrate the viability of SQIs by a
case study in real-vs-artifact classification to reduce alarm fatigue. Additionally, after
investigating 4 outlier detection methods, we validate our results on a closed-source
bleeding dataset from the University of Pittsburgh Medical Center, and test our
results on pig08. Furthermore, after testing 3 main ECG denoising approaches on the
open source dataset MIT-BIH Arrhythmia, we also evaluated a case study showing
that denoising improves real-vs-artifact detection. Finally, we conclude with examples
of denoised ECG from the pig data. As mentioned previously, we will release an
open-source implementation of all previously mentioned methods to serve as an
accessible, open source, toolkit for signal quality analysis.

While this work does not directly focus on state of the art results, future work
should be able to quickly reproduce our results, as a baseline to compare against.
Ideally, this work serves as an accessible, open source, toolkit for signal quality
analysis and ECG denoising. Additionally, future work may focus on different design
choices for the CNN Autoencoder denoising model. Since kernel size, number of
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layers, and dimensionality of deep learning models have a large impact in model
capability, a more extensive evaluation of parameter choices is needed. Grid search,
Bayesian Optimization, or other techniques could be used to search for the best
parameter choices for the network. Furthermore, the current model is limited with a
fixed size requirement of the input signal; future methods should seek to address this,
perhaps with alignment via Dynamic Time Warping, or by recent Neural Network
methods that do not require a fixed length input. Use of SQIs to measure signal
quality in conjunction with the denoising model may also allow the user to quantify
the expected improvement to the ECG signal.
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Appendix A

ECG Review Continued

The following is a non-exhaustive list of the main approaches to filtering, detection,
and managing ECG signal quality. Although no literature review can cover the entire
breadth of relevant work, the most relevant papers and methods should be covered.

A.1 Literature Review

A.1.1 ECG Signal Quality

The following is a list of relevant and popular literature regarding ECG signal quality.
Although there has been much work in this field, ECG signal quality metrics mainly
fall into a few categories.

Rule-Based Methods

Since there are many obvious checks in ECG signal quality filtering, it is common
for methods to operate with pre-programmed rules, such as flat-line detection, noise
quantification, and more. The following are some examples of such approaches.

Powerline, Baseline Wander, Muscle Artifact Rules: Johannesen et al. [40]
introduced an two-step algorithm to determine the quality of electrocardiograms
(ECGs). First, they reject ECGs with macroscopic errors (signal absent, large voltage
shifts or saturation). Second, three main sources of ECG noise were identified and
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filtered. Powerline noise was filtered via a modified sinusoidal estimation-subtraction
approach [51] and quantified via root-mean-square of the correction signal. Baseline
wander was filtered by subtracting a cubic spline function fitted to the QRS ’onset’
and quantified by root-mean-square of the cubic spline. Muscular noise was quantified
by root-mean-square of the difference between the median beat and sinus beats.
The 3 metrics were then summed to obtain a single quality metric. Evaluation was
performed using the PhysioNet Challenge database (1500 ECGs) [94]. They achieved
an overall classification accuracy of (92.3% for the training set and 90.0% for the test
set.

Beat Detection Rules: Tat et al. [98] designed a pipeline of rules to determine
the quality of ECG data including a Flat Line detection, the Tompkins et al. [75] real
time QRS detection algorithm, thresholding of Heart Rate and standard deviation
of amplitude. For the thresholds, common sense rules were applied, such as heart
rate higher than 30 bpm and lower than 210 bpm. Additionally, they also accounted
for misplaced electrodes, manually choosing the least noisy channel (V6) to obtain
r-peaks. Evaluation was performed on the PICC dataset [94]. Finally, their method
had a best score of 92% (accuracy).

Basic Signal Properties, Lead Crossing Points, and SNR Rules Hayn et al.
[30, 31] implemented and evaluated four ECG rules. (A) First, basic signal properties
such as signal amplitude, spike detection, and zero line detection were considered.
(B) Second, the number of lead crossing points (a measure of the amplitude of the
ECG signal) is calculated by plotting the leads. (C) Third, a quality measure was
calculated from a combination of a) signal-to-noise ratio (amplitude of lowest QRS
signal / highest amplitude of non-QRS signal), b) the maximum QRS amplitude,
and c) regularity of the detected rhythm. (D) Fourth, the quality measure of the
2nd-worst channel was thresholded.

Finally, a rules based method combined each of the former conditions. Evaluation
performed on the PICC dataset [94] showed that the best algorithm achieved an
accuracy of 0.933 in the training set and 0.916 on the test set. While rules A and B
may be accurate for real-time feedback during ECG self-recordings, QRS detection
based measures (rule C) can further increase the performance if sufficient computing
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power is available.

Filtering, Signal Noise, and Beat Residual Rules: Johannesen et al. [39]
presented a rule-based algorithm based on flat line detection, QRS detection, and
noise. First, lead-fail (flatline) in all leads was detected by checking the derivative of
the signal. Second, high frequency noise (root mean square after QRS detection [76])
was thresholded as a rule. Third, signals with noise causing missed beats after QRS
detection was discarded. Fourth, global low frequency noise (calculated after onset of
QRS) is thresholded. Finally, a signal quality metric calculated on the residual of
beats after subtracting the average is thresholded. Evaluation results on the PICC
database [94] showed that the algorithm achieved a Se of 91% and a Sp of 85% for
the training dataset, and an accuracy of 88% (Event 1) and 79% (Event 2) for the
test dataset.

Filtering, Amplitude, Guassian Noise, and Rpeak Detetion Rules: Liu et
al. [57] proposed 4 real-time signal quality assessment rules for ECG signal quality.
First, a rule for flatline detection is calculated by checking the standard deviation
of the signal. Second, a rule for detecting huge impulse is calculated by checking
if the signal exceeded a certain threshold. Third, a rule for strong Gaussian noise
is calculated via 2 methods. Sample entropy [85] of the signal was thresholded and
power spectrums of the signal frequence over the noise frequency [9]: 0.05 hz to 40 hz

40 hz +

was also thresholded. Fourth, a rule for R-peak detection error was calculated via a
digital filter.

Based on the proceeding rules, signal quality indexes are calculated for both
individual leads and on the combined set of leads, and are further thresholded. The
results on the PICC dataset [94] yielded a sensitivity of 90.67% and a specificity of
89.78% on the test set respectively.

Rules + SVM Classification: Kužílek et al. [47] developed an algorithm based
on simple rules and an SVM. Rules consisted of thresholds on variance, covariance,
max, and range of the ECG signal. The SVM was trained on covariance and time-
lagged covariance matrix elements. The output of both methods were then combined.
Evaluation on the PICC dataset [94] yielded a training accuracy of .99 and a testing
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accuracy of 0.836. Additionally, kurtosis, mean, or number of QRS signals detected
were found to be not significant features in the SVM.

Simple ECG Rules: Moody et al. [65] proposed simple, real-time, heuristic rules
including detecting flatlines, the overall ECG signal range, and the frequency of large
changes (by measuring range in overlapping windows). Evaluation on the PICC
dataset [94] with a combination of these rules yielded an accuracy of 91.3% for part
A and /89.6% for part B.

ECG Rule List: Langley et al. [48] proposed 6 decision rules, applied in a cascaded
manner. 1. flat baseline detection, 2. max value of signal, 3. high baseline drift
(extracted by 6th order Butterworth lowpass filter), 4. low amplitude after baseline
drift, 5. high amplitude after baseline drift, and 6. steep slope detection. Evaluation
on the PICC dataset [94] with the combined algorithm yielded a score of 91.4% on
the training set and 85.7% on the test set.

Flaline, Low Amplitude, Peak Artifact, Baseline Wander, High Frequency,
Powerline Rules: Jekova et al. [38] presented a system of rules for ECG noise
detection. It implements criteria for: 1. Flat line detection via the first derivative. 2.
Detection of a low amplitude (LA) lead by scanning the peak-to-peak amplitude in
the QRS boundaries after 4 Hz high-pass filtering. 3. Detection of peak artifacts (PA)
by thresholding the output of 1 Hz high-pass filter for specific slopes and amplitudes.
4. Detection of baseline wander by thresholding the mean of 1 Hz low-pass filter. 5.
Detection of electromyographic and other high-frequency (HF) noises by computing
the SNR of the output of 20 Hz high-pass filter. 6. Detection of powerline interference
by scanning the outputs of two band-pass filters BP50 (48–52 Hz) and BP60 (58–62
Hz).

In total, this yields 13 adjustable thresholds for amplitude and slope criteria which
are evaluated in adjustable time intervals, as well as number of leads. Evaluation on
the PICC dataset showed a sensitivity of 98.7% an a specificity of 80.9%.

48



A. ECG Review Continued

Signal Quality Index (SQI / SQA) Methods

Flat Line, Missing Channel, Amplitude, and Correlation SQIs: The winner
of the Physionet Challenge 2011 (PICC dataset) [94], Xia et al. [104] proposed a
5-stage algorithm for ECG signal quality detection. First, if the ECG has any flat
channels, then it is noisy. Second, if the ECG has any missing channels, then it is
noisy. Third, if the signal has an amplitude that is too high or small, it is also noisy.
Fourth, cross correlation is computed for different channels of the ECG, and if it is
smaller than a threshold, it is determined to be noisy. Fifth, a similar calculation
is performed for self-correlation. The authors also proposed a secondary method,
where they constructed a 12x12 matrix where diagonal elements are the quality of
the 12 channels of ECG, and the off-diagonal elements are the quality of correlations
between channels. The authors state that in the best case scenario, this matrix is
all zeros (since correlation ranges from [0,1], they assume that the authors are using
1-correlation). The authors the use the largest absolute eigenvalue of this matrix as a
measure of quality of the ECG.

Finally, the authors were able to achieve a training accuracy of 86% on the using
the first method and a training accuracy of 93.5% and testing accuracy of 90.0%
using the second method.

The dataset used are the Physionet/Cinc Challenge 2017 [14] as well as the 2011
challenge dataset [26, 94]. Accuracies of with an accuracy of 92.67% on the 2017
challenge and 94.67% on the 2011 challenge datasets are achieved by the described
method. Although the SVM method proposed by Clifford et al. [15] is still the best,
the authors emphasize the interpretability of this method while still obtaining good
performance.

Normalized Area Difference Between Successive QRS SQI Wang et al. [102]
proposed a signal quality measure based on the normalized area difference between
successive QRS complexes.

mismatch(x, y) =
∑

i |x(i)− y(i)|∑
i |x(i)|+

∑
i |y(i)|
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Where the mismatch is 0 if the 2 QRS waveforms are identical or 1 if there is no overlap
(e.g. x = −y). After a few processing steps such as aligning the beats and computing
histograms, the signal quality is determined by the rise of the leftmost histogram bin
curve. Evaluation was performed on the MIT-BIH two-channel arrhythmia database
[68]. Results on 44 records showed that the method identified 22 records where one
of the two leads had much better signal quality than the other lead. Furthermore,
the method also improves arrhythmia detection, as the average PVC false positive
rate was 0.47% for high quality leads compared to the average PVC false positive
rate of 2.56% for low quality leads.

Modulation Spectral SQI: Falk et al. [19] proposed a ECG quality index MS-QI,
based on the modulation spectral signal representation. This representation quantifies
the rate of change of ECG spectral components, which are shown to be different from
the rate of change of typical ECG noise sources. MS-QI is akin to a SNR measure.
The authors identified bins in the frequency components that corresponded to ECG
modulation energy and compared it to the remaining modulation energy as a ratio.

MS-QI was tested on 4 datasets: 1) synthetic ECG signals corrupted by varying
levels of noise from the MIT-BIH Noise Stress Test [68], 2) a real-world dataset of
single-lead ECG recorded using the Hexoskin garment over sitting, walking, and
running, 3) the PICC dataset [94], and 4) MIT-BIH Arrhythmia Database [67].
Experimental results showed that MS-QI performed more reliably than Kurtosis and
in-band (i.e., 5–40 Hz) to out-of-band spectral power ratio [12].

114 SQIs: Li et al. [54] presented a novel framework for false alarm (FA) reduction
using a machine learning approach to combine up to 114 signal quality and physiolog-
ical features extracted from the electrocardiogram, photoplethysmograph, and more.
The features extracted from ECG include heart rate, two metrics of inter-channel
and inter-algorithm comparisons of two QRS detectors, kurtosis, spectral distribu-
tion of ECG. Additionally, a fusion of the ECG metrics were calculated [52]. A
genetic algorithm [49] was used for feature selection, and a Relevance Vector Machine
[100] (a sparse Bayesian model) was trained and evaluated on the MIMIC-II [88]
dataset. Results showed that the implemented algorithm would not suppress any
true alarms with high confidence, while maintaining a moderate suppression rate for
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false ventricular tachycardia alarms.

Multichannel Adaptive Filter SQI: Silva et al. [95] presented a new generic
point-by-point signal Multichannel Adaptive Filter (MCAF) SQI based on adaptive
multichannel prediction [93] that does not rely on ad hoc morphological feature
extraction. The MCAF prediction algorithm consisted of a bank of M gradient
adaptive Laguerre lattice (GALL) filters [20] followed by a Kalman filter [29]. Each
GALL attempts to reconstruct the target signal from the input channels. The SQI
is calculated by comparing the predicted signal to the actual signal, along with a
flatline detection mask. Evaluation on the MIMIC-II dataset [88] yielded a AUROC
of 0.86 (PPG), 0.82 (ABP), and 0.68 (ECG). Additionally, the SQI is monotonically
related to signal-to-noise ratio (simulated by adding white Gaussian noise).

SQIs Applied to ECG SmartVest: Liu et al. [58] developed a novel wearable
12-lead ECG device that contains a real-time signal quality assessment (SQA) and
lightweight QRS detection system.

Other Machine Learning Methods

SNR of the QRS template: Quesnel et al. developed a method for calculating
metrics based off of the SNR of the QRS template [80, 81]. The method [80] first
calculates an average PQRST complex, then compares each PQRST complex to it.
The signal to noise ratio (SNR) for each beat is calculated as

SNRwindow = min
i=1···N

SNRi = min
i=1···N

20 log

(
RMS(PQRSTaverage)

RMS(PQRSTi − PQRSTaverage)

)
for beat i where RMS is the root mean square. The minimum SNRi used for the
analysis window. Evaluation on noise from the PhysioNet MIT-BIH Noise Stress
Test Database [68] and a clean ECG signal [37] yielded a correlation coefficient of
0.89 (estimate vs real SNR), suggesting that the proposed SNR estimation algorithm
produces results that reflect the actual SNR for a given ECG signal.

Anomalous Amplitude and Frequency Filtering: Redmond et al. [83] de-
scribed an algorithm for automatically marking ECG recordings for obvious artifact
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detection. The algorithm consists of 3 signal masks. The first is a Rail Contact Mask
that segments a 1 second window around anomalous amplitudes. The second is a
High Frequency Mask that notch filters out 50hz and high-pass filtered at 40 Hz. The
third is a Low Power Mask that performs band-pass filtering with a passband of 0.7
- 33 Hz. Evaluation on 4751 single lead-I ECG recordings from 24 home-dwelling
patients showed a sensitivity of 89% and a specificity of 98%.

Clustering and Kernel Density Estimation Redmond et al. [84] introduced an
algorithm to determine the quality of single-lead electrocardiogram (ECG) recordings
obtained from telehealth patients. After removing gross movement artifacts by
masking and filtering [83], detected beats (using Pan Tompkins [75]) were first
clustered using K-means. Features are then calculated on the clusters, such as mean
ratio of vector error norm to mean cluster vector norm, and so on. Also, correlations
such as mean correlation of entire beat with clustered beat shape are also calculated.
Parzen window classifier (Kernel Density Estimation) was then applied to estimate
the remaining ECG signal quality. Evaluation was performed on 300 short ECG
recordings were manually annotated to identify movement artifact, QRS locations
and signal quality (discrete quality levels). The classifier yielded an accuracy of 78.7%
, similar to the gold standard annotation (accuracy = 70–89.3%).

Energy-Concavity Index (ECI) and a correlation-based metric: Naseri et al.
[72] proposed a three stage algorithm including preprocessing, energy-concavity index
(ECI) analysis, and a correlation-based final step. First, the preprocessing removes
high frequency disturbances by gaussian smoothing [32, 71]. It then removes baseline
wander by adaptive smoothing filtering. Then, an energy-based signal quality metric
(energy-concavity index) was calculated. The signal concavity was calculated as mean
slope of lines drawn from the centre of the window to all the points of the window
samples. Then, the signal concavity was normalized. Finally, energy of the normalised
concavity curve is calculated by gaussian smoothing filtering. A correlation-based
quality measurement is also calculated using the correlation between ECG leads
estimated by applying a suitably trained neural network.

Evaluation was performed on the PICC dataset [94] as well as a personal dataset
[24] of 25 3-lead, 1-hr long, ECGs. On the personal dataset, the combined ECI and
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correlation achieved a sensitivity (Se) of 77.04% with a positive predictive value
(PPV) of 90.53% for detecting high-energy noise. On the PICC dataset, the combined
metrics achieved a final score (accuracy) of 93.60%

Empirical Mode Decomposition Methods: Lee et al. [50] presented a two-stage
method for the detection of motion and noise (MN) artifacts. The first stage applies
empirical mode decomposition (EMD) [35] to isolate HF components of the signal.
Specifically, the first-order intrinsic mode function (F-IMF) from the EMD is used.
This goal is to isolate the artifacts’ dynamics as they are largely concentrated in the
higher frequencies. The second stage calculates Shannon entropy, mean, and variance
on the F-IMF time series. These 3 features are then thresholded for classification
of noisy / clean. Training was performed on ECG (Holter Monitor) data from 15
healthy subjects to derive threshold values associated with these statistical measures.
Evaluation on 30 additional subjects show a sensitivity of 96.63% and specificity of
94.73%.

Wavelet Transform and Hidden Markov Model: Sangaiah et al. [90] proposed
a three phrase framework to analyze ECG. First, the ECG signal quality is filtered to
reduce noise. Motion artifacts and baseline wander is removed by an IIR elliptic high
pass filter of order 3 and with a cut-off frequency of 0.5 hz. Power line interference is
removed by a 60 hz IIR notch filter. Second, a wavelet transform [2] is used to extract
features. Third, a hidden Markov model (HMM) is used for cardiac arrhythmia
classification.

The features extracted include the maximum, minimum, mean, standard deviation,
and median of each wavelet coefficient. Evaluation on 45 ECG records in MIT BIH
arrhythmia database [67] and MIT BIH noise stress test database [68] yields an
accuracy of 99.7 % with a sensitivity of 99.7 % and a positive predictive value of 100
% for cardiac arrhythmia classification.

Autocorrelation Features and RUSBoost (Ensemble Boosting Classifier for
Imbalanced Data) Moeyersons et al. [64] presented an that uses features from the
autocorrelation function to classify signal quality using RUSBoost, a probabalistic,
tree-based, boosting, ensemble method that works well for imbalanced datasets. First,
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the ECG was filtered by a zero phase, 2nd order high-pass and 4th order low-pass
Butterworth filters with cut-off frequencies at 1 Hz and 40 Hz, respectively to remove
baseline wander and high frequency noise. Second, ECG windows were passed thru the
autocorrelation function, and first min, max amplitude, and similarity was extracted
for classification via RUSBoost. The probability of the clean class is used as a SQI.
Evaluation was performed on 3 datasets: a sleep dataset [101], the PhysioNet 2017
Challenge dataset [14], and a stress dataset [36]. AUC values between 0.988 and
1.000 were obtained when training the model on the Sleep dataset and evaluating on
the other datasets.

A.2 Open Source Datasets

The MIMIC-II database (Multiparameter Intelligent Monitoring in Intensive
Care II) [88] MIMIC is a very large database of patients from the ICU. The updated
versions, MIMIC-III [42] and MIMIC-IV [41] are the more commonly accepted and
used version, and both are accessible via PhysioNet [26] after a data usage agreement.
The database consists of 25,328 intensive care unit stays. Detailed information about
intensive care unit patient stays, including laboratory data, therapeutic intervention
profiles such as vasoactive medication drip rates and ventilator settings, nursing
progress notes, discharge summaries, radiology reports, provider order entry data,
International Classification of Diseases, 9th Revision (ICD-9) codes, were collected.
For certain patients, high-resolution vital sign waveforms and chest x-rays were also
collected. Data were automatically deidentified to comply with Health Insurance
Portability and Accountability Act (HIPAA) standards and integrated with relational
database software to create electronic intensive care unit records for each patient stay.

ECGSYN This realistic ECG waveform generator [63] is able to synthesize an
ECG signal with user-settable mean heart rate, number of beats, sampling frequency,
waveform morphology (P, Q, R, S, and T timing, amplitude,and duration), standard
deviation of the RR interval, and LF/HF ratio (a measure of the relative contributions
of the low and high frequency components of the RR time series to total heart rate
variability). Using a model based on three coupled ordinary differential equations,
ECGSYN reproduces many of the features of the human ECG, including beat-to-beat
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variation in morphology and timing, respiratory sinus arrhythmia, QT dependence
on heart rate, and R-peak amplitude modulation. The output of ECGSYN may
be employed to assess biomedical signal processing techniques which are used to
compute clinical statistics from the ECG. An open source implementation is available
on Physionet [26] as well as in the Neurokit Python Package [61].
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